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THE NUMBER OF LATTICE POINTS IN ALCOVES AND 
THE EXPONENTS OF THE FINITE WEYL GROUPS 

RUEDI SUTER 

ABSTRACT. We count lattice points in certain rational simplices associated 
with an irreducible finite Weyl group W and observe that these numbers are 
linked to the exponents of W. 

1. INTRODUCTION 

The main point of this note is to present an (as far as I know) new formula for 
the exponents of an irreducible finite Weyl group. For basic terminology the reader 
is referred to any one of the books [1, 3, 51. In any case, let me recall a few ways of 
how the exponents occur. Thus let W be an irreducible finite Coxeter group with 
set of Coxeter generators S and rank I = IS]. 

The Coxeter transformation c:= ] s E W is well-defined up to conjugacy, and 
sES 

its order h = cl is the Coxeter number of W. If exp 27rimr /h,.. ., exp 27rim/l h with 
0 < m1 ? ( ml < h are the eigenvalues of c in the reflection representation, 
then the integers m1, .. , ml are called the exponents of W. 

Here is another approach to describe the exponents. Let : W -4 >0 be the 
length function. Then 

(1) E = 1171u 1 -t"i+ 
wEW i=l 

A third characterization of the exponents comes from the fact that the numbers 
ml + 1, . , ml + 1 are the degrees of the fundamental polynomial invariants of W. 

Fourth, the exponents of W can be read off the Poincare polynomial of the 
hyperplane arrangement associated with W. 

Suppose from now on that W is crystallographic. It is thus the Weyl group of a 
compact, connected Lie group G. The manifold G has the same cohomology as a 
product of odd-dimensional spheres, 

H* (GI R) -_ H* ( lS2mi+l, IRI 

which again determines the exponents. 
Still another possibility to describe the exponents in the crystallographic case is 

as follows. Consider a root system with Weyl group W, and let ki be the number of 
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positive roots of height i. (The height of a root is the sum of its coefficients when 
expressed as a linear combination of simple roots.) Then (ml,... , m1) is the dual 
partition to the partition (k1,... , khl). 

2. ANOTHER FORMULA FOR THE EXPONENTS 

Now we come to another formula for the exponents of an irreducible finite Weyl 
group W, a formula which involves counting lattice points in a rational simplex 
A(m). As an aside let me mention that in the past few years considerable progress 
has been made in the theory of toric varieties and hence in the problem of counting 
lattice points in integral polyhedra (see [2, 4]). The counting problem we shall deal 
with is very simple. 

Let me explain the definition of / which also provides some motivation. A 
reader who is not familiar with semnisimple Lie theory may hop to the beginning 
of the next paragraph. Let p be a simple complex Lie algebra whose Weyl group 
is W. (It doesn't matter whether we take p = 5?21+1 (C) or g = -SP21 (C) if W is 
hyperoctahedral.) We choose a Cartan subalgebra r and a Borel subalgebra b with 

0 C b C g and thus get an irreducible finite root system b C 0* together with 
a basis of simple roots (ci)=1. and its corresponding set of dominant integral 

weights P+ = 0 2;o0i, where (vi)i=1. are the fundamental weights, i. e., the 

basis of r* dual to the basis (aj)ji=,...,l of simple coroots. The intersection (DnP+ 
consists of the highest root 0 together with the highest short root Os. Of course, 
0 = O if g is simply laced. We want to count the elements of 

A( =A E p+ i (A{ Ov) <) m} (m E E). 

The coroot O' is the highest root of the dual root system, and its coefficients with 
respect to the basis (a"j) =1.., i. e., the numbers ni := (vi, O') (i = 1,... ,1) are 
sometimes called the marks (of the dual root system). Equivalently, IA(-)l is the 
number of dominant integral weights (of fixed null depth) at level m of the (twisted 
if g is non-simply-laced) affine Kac-Moody algebra corresponding to g. (For the 
untwisted version onle has to replace O, by 0 in the definition of A(-T). So instead of 
having nl, .. ., nr being the marks, one would take them to be the comarks.) 

The upshot of the previous paragraph is that we have 1 positive integers nl, .. ., nj 
associated to W. The cardinality A(l) I we are interested in is nothing else than 
the dimension of the K-algebra (K is any field) 

K [xi,... , xi]/(monomials of degree strictly bigger than m) 

with deg xi ni (i = I,... 1). 
The generating function 

=0e 

counts nonnegative integral solutions to the equation a1in + + ainr = m. The 
coefficients we are interested in are the sums of the coefficients of this generating 
function. Putting no := 1, we have 

W . at Ine0m 
(2) (I - tno) .. (I 

- tni) E I/ A(- tm. 

We say no,.., ni are the affine marks of W. 
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Let ii lcm{no, . . . , nm}. It is clear that there are polynomials p1 (x),.. .pi (x) 
such that IA(m) I pa (m) if m _ a (mod ni) and m > 0. In fact, 

( t )* *(1 t_)____ __t_)_(1 _t _ 

Substituting equation (3) into the left hand side of equation (2), we thus have an 
explicit formula for the numbers IA(-)I and hence for the polynomials Pa(x). (It 
turns out that Pa(X) = pb(X) if gcd{a, ni} = gcd{b, ni}. This is not so in general but 
holds for the special choices for no, . . . , n, we have to consider.) 

Recall that the order of W can be expressed as IWI = f 1! . l ni, where f is the 
i=l1 

index of connection, i. e., the determinant of the matrix of Cartan integers. It turns 
out that f is the number of affine marks of W equal to 1, i.e., f - /(')I by (2). 

Indeed, this description of f is a consequence of the formula IWI= Jl (Mi7 + 1), 
i=l 

which follows from equation (1), and the formula (4) with m = 1 below. 

Observation. Let W be an irreducible finite Weyl group with affine marks 
noI,... ,n and exponents mj,...,m1. Define IA(-)I as in equation (2). Let f be 
the index of connection of W and ni lcm{O, .n . , ni}. Then 

(4) = f J7j(m +Ami) 

for every positive integer m satisfying gcd{m, ni} 1. 

We are now in the usual situation that an empirically observed result awaits for 
a conceptual proof. 

3. THE TABLES 

The head of each table shows the affine Coxeter-Dynkin diagram. Its vertices 
are decorated with the marks no, . . . , nl. The left column contains the polynomials 

fI 
* } (n), and the number in the right column is gcd{m, ni}. The polynomials 

are ordered by increasing coefficients. 

1 

Al 

1 1 1(1 1 

J7J (in A-i) 1 
i=l1 
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^~ 
1 2 2 2 2 2 

Bi 2~1 2 2 
C ~~~~~1 2 2 2 2 1 

7 (m +2i- 1) 1 
i=l 

(m +l) (m +2i) 2 

Di6 > t ; n 2 

1-1 
(m+1-1) J7(m+2i-1) 1 

(m2+2(1 - 1)m + (l2l)) H(m + 2i) 2 
12 2 

1 2 3 2 1 

E6 24 2 n= 6 

(m+1)(m +4)(m +5)(m +7)(m +8)(m + 11)= 1 
m6+ 36Gm5 + 510m4 + 3600m3+ 13089m2 + 22284m + 12320 

(m +3)(m +9)(m4+24m3+195m2+612m +480)= 3 

m6+ 36Gm5 + 510m4 + 3600m3 + 13089m2 + 22284m + 12960 

(m +2)(m +4)(m +8)(m +? )(m2+12m +26) 2 

m6+ 36Gm5 + 51Gm4+ 3600m3 + 13224m2 + 23904m + 16640 

(m +6)2(m4+24m3+186m2+504m +480)= 6 

m6+ 36m5 + 510m4 + 3600m3 + 13224m2 + 23904m + 17280 

1 2 3 4 3 2 1 

E7 b n=12 
2 

(m +1)(m +5)(m +7)(m +9)(m +11)(m +13)(m +17)= 1 

m7+ 63m6+ 1617m5+ 21735m4+ 162939m3+ 663957m2+ 1286963m + 765765 

(m +3)(m +9)(m +15)(m4+36m3+438m2+2052m +2289)= 3 

m7+ 63m6+ 1617m5+ 21735m4+ 162939m3+ 663957m2+ 1304883m + 927045 

(m +2)(m +10)(m +13)(m +14)(m3+24m2+155m +342)= 2 

m7+ 63m6+ 1617m 5+ 21735m4 + 163884m3+ 689472m2 +1495808m + 1244880 

(m +4)(m +5)(m +8)(m +16)(m33Gm2 +263m +504)= 4 
m7+ 63m6+ 1617m 5+ 21735m4 + 163884m3+ 689472m2 +1495808m + 1290240 

(m +6)(m6+57m5+1275m4+14085m3+79374m2+213228m+234360) = 6 
m7+ 63m6+ 1617m 5+ 21735m4 + 163884m3+ 689472m2 +1513728m + 1406160 

(m +12)(m6+51m5+1005m4+9675m3+47784m2+116064m+120960)= 12 

m7+ 63m6+ 1617m 5+ 21735m4 + 163884m3+ 689472m2 +1513728m + 1451520 
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<) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~C" Cn 

t~~~~~~~~~~~~~~~~0 C 0 "t CI O O O O 

cs) e CS 1 CS 11 41 ~~~~~~~~~~~~~~~~00 
00 

C-4 O 00 
n~~~~~~~~~~~~r- cl 00 CD) < c S t S< 00 t- 

o oo o E o m: 8 oooo o Lo oo o o 
O " O ~ ~ S b CS C' , , oo oo- cc cS 

+ + + 11+ + + + O+ + + ce+ + 

O~~~~~~~~~~~~~~~~~ + O. 11 0 = 10nO1 
S 

g b n e t t t m st' g 
~~~~~~~~~~~~~~C"I CNI C S 0 CS4 

n~~~~~~~~~~~~~~~~~0 O 0 + m LSC '1s?n??O LO d 
m .l oO m oO I ?sKs+s t -t c sS 

~~ 
, O dz O b oo 

+ o O o ' o OoOc, L 

n m + CQ + t ~~~~~~~~~~+ + t+ 0. + t+ >0+ C+ + +'M + + 

L: K 00 CO 00 O 00 ~~~~~~~ 00 00 00 00 CS 00~~~L 00 CA00 0 00 

./~~~~~~~~~ LO = + MtnOe 

+ 0O00 + 00+ 00 00 00 + 00 +0 00 5 00 00 00 00 
t- t- LO LO "!t Ot O t O t O - 00 0 nO 

C H_s : C) C'l C"l CD C) +o C= C 
S S'+ s S C)o : C) t O CSLO .cS ? Cs+ w)c, 0 C 

~~~~~~~~C-1 a) t- r-- ~O C<i +q C - c: C'l cS l Lo C-4 CS s S 

+ + S + + ~~~~~~+ O+ + + + + + C' + + + + + 
+ 5 m m 5 m + 5 m + S SsSS 

CD CD ? g- LO ??%??? 
??+? 
so ?1o oc 

o00 -,t+ oo 0 0o 
I o + CO1N C14 'I n n1n O q n c nc cq 

Lo LO LO LO LO Ho LO L O t t0 

+ 0 + ~~~~~~~+ + + + OR + + + ) + 0 + + 

e~~~~~~~~~- 
t . 't, 00 Cs 

+0 S + + S 2 + 00 00 o + x + S S S 

<) LO 5 LO cn LO C: 1 

++++++ + + + + + + + r + + + + + + + + 
5 LO LO so L oo ) 5 LO Lzo O LO LO 00 ooL O CD Lt O LO 

AL~~~~~~~~~~~~~~~ + 5 5 + 5 5 + 5 (= 5 t- 5 5 
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F4 1 2 3 42 12 p p *=>*~-e* 
(m1 + )(m + 5)(m + 7)(m + 11) = m4 + 24m3 + 190m2 +552m + 385 1 

(m + 3)(m + 9)(m2 + 12m + 19) = m4 + 24m3 + 190,m2 + 552m + 513 3 

(m + 2)(m + IO)(m2 + 12 m + 44) = m4 + 24 m3 + 208 m2 + 768m + 880 2 

(m + 6)2 (m2 + 12m + 28) = m4?+ 24 m3 + 208 m2 + 768 m + 1008 6 

(m + 4)2 (m + 8)2= m4?+ 24 m3 + 208 m2 + 768m + 1024 4 

m4+ 24m3 + 208m2 + 768m + 1152 12 

G2 3 2 1 n=6 

(m+1)(m+5) =m2+6m+ 5 1 

(m+2)(m+4)-m2 +6m+ 8 2 

(m+3)2 = m2+6m+ 9 3 _ ~ ~~ 6 m 2+6m+12 6 

4. MORE OBSERVATIONS 

The tables suggest more observations. For instance, the polynomials for which 
gcd{m, ni} 1 have the smallest coefficients, those for which gcd{m, n =i the 
biggest. This is of course what one expects. 

There are IA(m-h)l points in the "interior" of A(m), i.e., in 

{A+p I A E P+, (A+p, Ov) < m}, 

where p = E m. In fact, the points in the "interior" correspond to strictly positive 
i=l 

integral solutions to 

(5) ain? + *+ ain <m. 

There are IA(m-h)l such solutions because 1 + ni + - .+ ni = h. (The 1 accounts 
for the strict inequality in (5).) IA(- -h) is connected to the polynomial for IA(m)I 
by reciprocity, i. e., Serre duality in the context of toric varieties. To be precise, let 
Pa(x) be the polynomial for which IA(m)I = pI(i) if m- a (mod ni) and m ? 0. 
Then 

Pa-h(m - h) (-1)'Pa(-m). 

In particular, we have 1 = gcd{1, i} = gcd{1 - h, n}, whence 

pii - h) - Pl(m-h '= p (-) (-m), 
or, using the observation (4), 

l I 

i=1 i=1 

Hence Serre duality yields a fancy but amusing way of obtaining the symmetry 
(h -ml, . . ., h - m1) (m1, .. ., ml) of the set of exponents. 

The reader may draw further observations from the tables, e. g., describe which 
linear factors occur. 
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5. THE OTHER AFFINE COXETER-DYNKIN DIAGRAMS 

As already mentioned, the tables for Bl, Cl, F4, and G2 give the number of 
dominant integral weights at level m for the twisted affine Kac-Moody algebras. 
Physicists may be more interested in the untwisted case and want to count the 
number of primary fields for the WZNW conformal field theory models. The tables 
for these numbers are given below. 

The left column in the table for X' contains the polynomials (1! hni) A(m)l 

with I A(m) I defined as in equation (2) for no,... , ni as shown in the diagrams, and 
the number in the right column is gcd{m,ni}. As before, n = lcm{no,...,nll. 
Again, if the level m satisfies gcd{m, i} = 1, IA(-) I is a product of 1 linear factors. 
This time the connexion with the exponents is less straightforward. 

The sum g := no + n + -+ nl is the dual Coxeter number. Now the reciprocity 
formula connects I A(m-9) with the polynomial for I A(m) . 

Also there is the table for BC1 which merely counts lattice points for Cl, but in 
a stuttering manner, meaning that IA(2/t+l)l I AZ(2't)I for ,u Z 2. 

6. MORE TABLES 

22 2 2 

1 

cv 111 lt1n 

same table as for Al 

F4V I~~~~ 2 3 2 I 1 

FvJ(m?i- 1)6 

(m + l)(m + 5)2(m + 7) 2 m4 + 18m3 + 112M2 + 270m + 175 1 

(m + 3)(m3 + 15M2 + 67n + 69) =1m4 + 18m3 + 112M2 + 270m + 207 3 

(m + 2)(m + 4)2(m + 8) 
- m4 + 18m 3 + 112 M2 + 288,m + 256 2 

(m +6) (m3 + 12 M2 + 40,m +48) = m4 + 18,m3 + 112 M2 + 288m +288 6 

G2V I~~~~ 2 1n=2 

same table as for B2 

BCI 2 2 2 2 2 1 ni- 2 

r(m +2i -1) I 

I(,m + 2i) 2 
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